ANALYSIS OF SCIENTIFIC RESEARCH ON MACHINE LEARNING TECHNOLOGIES IN THE FIELD OF FINANCE AND CREDIT IN UZBEKISTAN

Authors

  • Shuhratova Madina Ikrom qizi Doctoral student (PhD) Tashkent State University of Economics, Uzbekistan

Keywords:

credit scoring, machine learning, creditworthiness assessment, banking, digital technologies, logistic regression, binary classification

Abstract

In recent years, Uzbekistan has witnessed a growing level of scientific activity in the field of applying machine learning methods in the financial sector. Of particular relevance is the area related to credit scoring—automated assessment of borrowers’ creditworthiness using intelligent algorithms. Based on an analysis of publications by Uzbek researchers from 2020 to 2024, several key trends and research approaches can be identified. Modern technologies are exerting an increasing influence on the development of the financial sector. One of the key directions of digital transformation is the implementation of machine learning and artificial intelligence methods for data analysis, risk forecasting, and optimization of business processes. The application of these methods is especially important in the area of credit scoring—systems for assessing customers’ solvency. The use of machine learning makes it possible to improve prediction accuracy, reduce default rates, and accelerate decision-making processes in banks and microfinance institutions.

References

Literature

Isakov, Olmas. 2024. “Comparison of Machine Learning Methods in Bad Loan Predictions: Analysis of Micro Finance Data”. DTAI – 2024 1 (DTAI). https://dtai.tsue.uz/index.php/DTAI2024/article/view/305.

Abdullaevich, Abdullaev Nekruz, and Umarov Muzaffarbek Shavkatovich. 2022. “Modern Technologies and Modern Scoring in Modern Uzbekistan: Tasks, Methodologies, Problems”. Academic Journal of Digital Economics and Stability 18 (June):108-18. https://doi.org/10.51699/ajdes.v18i.532.

Джурабаев О.Т., Атаджанов Ш.Ш. “ПРИМЕНЕНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА ФИНТЕХЕ В УЗБЕКИСТАНЕ. ИССЛЕДОВАНИЕ И АНАЛИЗ”. 2024. Innovations in Science and Technologies 1 (5): 4-11. https://www.innoist.uz/index.php/ist/article/view/470.

Ochilova Khusniya Olim kizi. 2025. “METHODS AND TOOLS OF CREDIT RISK ASSESSMENT IN THE MODERN SYSTEM OF RISK MANAGEMENT”. E Global Congress 25 (January):1-8. https://eglobalcongress.com/index.php/egc/article/view/294.

Meliboev Azizjon. 2024. “BY USING DATA ANALYSIS AND MACHINE LEARNING TECHNIQUES FOR BANK TURNOVER PREDICTION”. University Research Base, April, 481-86. https://scholar.kokanduni.uz/index.php/rb/article/view/372.

Yormatov Ilmidin Toshmatovich, and Mirzaliyev Axror Baxodirovich. 2024. “Theoretical Foundations of Credit Risk Assessment In Commercial Banks”. Journal of Marketing and Emerging Economics 4 (6):226-30. https://oajournals.net/index.php/jmee/article/view/2671.

Норов А.Р. Механизм кредитования через автоматизированную скоринговую систему в коммерческих банках / А.Р. Норов, и соавт. – 2023. – Журнал: OpenAccessJournals..

Джафарова Ш.А., Ботабоев М.Ш. “IMPROVING CREDIT RISKS IN UZBEKISTAN BANKS”. 2024. International Journal of Artificial Intelligence 4 (10): 602-4. https://www.academicpublishers.org/journals/index.php/ijai/article/view/2077.

Абдурашидова М.С., Балбаа М.Э. Искусственный интеллект в банковском секторе Узбекистана: изучение влияния и возможностей / М.С. Абдурашидова, М.Э. Балбаа. – 2023. – Журнал: ResearchGate].

Nuralievich, B. O., & Boltaevich, M. B. (2021, November). Method of Detection and Elimination of Tracks of Attacks in the Information System. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-2). IEEE.

Nuralievich, B. O., Boltaevich, M. B., & Ugli, B. U. B. (2022, September). The Procedure for Forming a List of Sources of Attack in the Information System. In 2022 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-4). IEEE.

Bekmirzaev O., Shirinov B. An Algorithm for Viewing Node State Events Under Attack for Information Systems // AIP Conference Proceedings., 2024, 3147(1), 050003. DOI: 10.1063/5.0210404

Bekmirzaev O., Samarov H. A Method of Evaluating the Effectiveness of Information System Protection // AIP Conference Proceedings., 2024, 3147(1), 050004. DOI: 10.1063/5.0210405

Muminov, B., & Bekmirzaev, O. (2022). Structure and algorithms of online discussion information system. Scientific Collection «InterConf», (114), 373-384.

Downloads

Published

2025-12-20

How to Cite

Shuhratova Madina Ikrom qizi. (2025). ANALYSIS OF SCIENTIFIC RESEARCH ON MACHINE LEARNING TECHNOLOGIES IN THE FIELD OF FINANCE AND CREDIT IN UZBEKISTAN. INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact Factor: 8.036, 14(12), 103–108. Retrieved from https://www.gejournal.net/index.php/IJSSIR/article/view/2800