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1. Introduction. It is known that in the work of E.Del Vecchio gives a method for constructing
fundamental solutions of an equation with multiple characteristics and as an application, a
fundamental solution of the equations is constructed (cm.[1])

o%u  au

Lu=24_M-g 1
ox® ot @
o’u o4

Llu=—-—=0. 2
ox®  ot? @

Further, L.Cattabriga developing the work of E.Del Vecchio in 1961 investigated the properties
of the potentials of the fundamental solutions of equation (1), i.e. he built the theories of the potentials
of the fundamental solutions of the equation (see [2]). Later, the researchers considered a number of
boundary value problems for equation (1) with local and non-local boundary conditions, for example,

(em.[2]-[5D).

In this paper, the following problem is considered:

Need to find a function u(x,t) € K, which is a regular solution of the equation

o°u  ou
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in the area of QQ ={(X,t):0<x <1, 0<t<T} and satisfies the conditions
u(x,0) = pu(x,T), w=const, (4)
U0 =a ), uOH=p®), ulLt=p®). ©)

Here K, ={u(x,t):u(xt) e C3H(Q) nCZ(Q), u,, e C(Q)}.

It is known that the fundamental solutions of equation (2) have the form (cwm. [2]).
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Here

U(x-&t—1)=(t— r)_1/3f(( )98“3), x=&, t>7; (6)
Vx-&t—1)=(t-7)p [(tx_fmj’ X>¢&, t>7. (7)

f(z)= Tcos(/l?’ —/lz)d;t,—oo <7<,
0
o(2) = Ojo(exp(—/f —/?.z) +sin(ﬂ,3 —ﬂz))dﬂ,, 7>0,
0

z=(x=&)(t-2)"

For the function U(x-&t—7), V(x=&t—1), f(2), ¢(z) the following
relations are valid

f”(z)+%zf (2)=0, q)”(z)+%2¢(z):o, ®)
© 0
[f(@)=mr If(2)= If( )= I(P(Z) 0, (9)
lim jU§§(X at—o)a(s, T)dr——a(t) (10)
(x)—>(a-0.);
lim jU x—at—7)a(s, r)dr——z—ﬁa(t) (11)
(xt)>(a+0t); 5 3
t
lim fﬁ(x at—7)a(&,7)dr =0, (12)
(x,t)>(a+0,t)
mio(2
f"z): ciz 4 sin(gzmj, Z >, (13)
mto(2
o"(2): c'z * sin(gzwj, Z —> o, (14)
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e 2
f"2): ¢ |z| 4 exp(—§|z|3’2} 7 — —oo, (15)

2. Main results

The theorem 1. Let ,uz <exp{-T}. Then problem (3)-(5) does not have more than one
solution.

Proof. Let the problem (3)-(5) have two solutions: U,(X,t), U,(X,t). Then assuming
v(X,t) = u (X,t) —u,(X,t) we get the following problem with respect to the function V(X,t)

oV ov
Lv=—-—=0. 16
oxd ot 1e)
v(X,0) = uv(x,T), (17)
v(o,t)=0, v,(0,t)=0, v, (1,t)=0. (18)
Consider the identity
1T
[JL(v)v,, exp{-t}dxdt = 0. (19)
00

Integrating in parts, taking into account homogeneous boundary conditions (17), (18), we have

1 1T 1 T
—= [V (x.t) exp{-tyaxdt — = [v2 (1,t)exp{—t}dt -
2%0 25

1
—% V2 (%, T){exp{-T}- p*3dx =0
0
From here, vV, (X,t) =08 Q, v, (X,T)=0 8 x€[0,1], v,(1,t)=08t<[0,T].

Let 1* <exp{-T}. Then from these inputs we get: v, (X, T)=0 = v, (x,T) = const.

Since v,(0,t)=v,(1,t)=0 = v, (0,0)=Vv,(0,T)=0, o Vv, (X,T)=const=0 by
vx €[0,1].

Next, we have V. (X,T)=0 = v(x,T)=const = v(x,0)=const.  Since
v(0,t)=0 = v(0,0)=0, 10 Vv(X,0)=const=0 by Vxe[0,1]. Due to the fact that
V,(1,t) =0 = v(1,t) = const and v(0,0) =0 we have v(1,t) =0.

Then we get the following boundary value problem with respect to the function v(X,t)
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v(x,0)0=0, v(,t)=0, v,(0,t)=0, v(1,t)=0.
Due to the work [2], this problem has a unique solution.

Now let g =exp{-T}. Then v, =0 = v (Xt)=0,(t) by Vte[0,T]. Since
v, (0,t) =v, (1,t) =0, by Vt €[0,T], that 5,(t) =0 by Vt[0,T].

Further, v, =0 = v(x,t) = 5,(t) by Vt €[0,T]. Since v(0,t) =0, by Vt €[0,T], that
0,(t)=0 by Vte[0,T].

Then by virtue of continuity v(x,t) =0 s Q.

The theorem 2. Let (t) e C*([0,T]), ¢,(t) eC'([0,T]), ¢, (t) eC*([0,T]). Then
there is a solution to the problem (3)-(5).

Proof. Consider an auxiliary problem:

Find a function u(x,t) € K, which is a regular solution of the equation

Lu=—-—=0. (20)

in the area of Q ={(X,t):0<x <1, 0<t<T} and satisfies the conditions
u(x,0) = z(x), (21)

U0 =@M, uOD=g), uLb)=w). (22)
Due to the work [3], the solution of the problem (23)-(25) will be in the following form

zu(x,t) = —}Gg (x-L;t—w(r)dr -
0

—j(;Ggg(X -0;t—7)p(r)dr + T£-G§(X -0t —7)p,(r)dz +

1

+[G(x =&t =0)r()dS, (23)
0

where
G(x-&it—7)=U(x-&it—7)-W(x—&;t—1),
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function W (X —&;t —7) is a solution to the following problem

oW oW
M =————-——=0,
W)=
Uleet™Wlee U ™ Wi ey Uleeo= W ez,
W | _=0.

Denote U(X,T) = a(X). Then going to the limit t — T from (26) we get

o (X) = —}Gé(x -1;T —7)yw(r)dr —
0
—}G&S(X —0;T —7)(r)dr +]‘G§(X —0;T —7)p,(r)dz +

1
+u{G(x =& T -0)a(&)dS, (24)
0

So we have obtained an integral Fredholm type equation with respect to the function a(X)
1
a(x) = [K(x,§)e(5)dE + F(x), (25)
0

where

C
HB(X-ET =0 AKXl e

—.t[Gé (x=1;T —7)y(r)dr — }G&g(x -0;T —1)p(r)dr +
0 0

+}G§(x —0;T —17),(r)d7 = F(x) e C3([0,1]).
0

By virtue of the uniqueness of the solution of the problem (3)-(5), the integral equation (25)
has a unique solution.
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