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Abstract: In the present article, the problem of construction of the optimal quadrature formula 

in the sense of Sard is discussed for numerical integration of the right Riemann-Liouville integral in 

the Hilbert space of real-valued functions. Initially, the norm of the error functional is found using 

the extremal function of the error functional of the quadrature formula. Since the error functional is 

defined on the Hilbert space, the quadrature formula that we are constructing is exact for zeros of this 

space, that is, we have the conditions that the influence of the error functional on these functions is 

equal to zero. Then, the Lagrange function is constructed to find the conditional extremum of the 

error functional. Thereby, a system of linear equations is obtained for the coefficients of the optimal 

quadrature formula. The existence and uniqueness of the solution of the obtained system are studied. 

Keywords: optimal quadrature formula, the extremal function, the error functional, optimal 

coefficient, Lagrange function. 

 

1. Introduction. 

It is known that calculus means integration and differentiation. Fractional calculus, as its name 

suggests, refers to fractional integration and fractional differentiation. Fractional integration often 

means Riemann-Liouville integral. But for fractional differentiation, there are several kinds of 

fractional derivatives. In the following definition is introduced [1, 3, 4]. 

Definition 1. (Definition 1 in [7]) The left fractional integral (or the left Riemann-Liouville 

integral) and right fractional integral (or the right Riemann-Liouville integral) with order 0   of 

the given function ( )t , ( )0,1t  are defined a 
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respectively, where ( )Г   is Eulier’s gamma function. 

The study of fractional integrals (1) and (2) is a two hundred year old subject that is part of a 

branch of mathematical analysis called Fractional Calculus [1, 2, 4]. Recently, due to its many 

applications in science and engineering, there has been an increase of interest in the study of fractional 

calculus. Fractional integrals appear naturally in many different contexts, e.g., when dealing with 

fractional variational problems or fractional optimal control. And also at the present time researchers 

pay attention to study partial differential equations including fractional differential operators and 

problems related to these equations. For more information we note works [8], [9] and references 

therein. While studying problems for mixed type equations one has to solve some integral equations 

including fractional differential equations (see [10], [11], [12],[13]). As is frequently observed, 

solving such equations analytically can be a difficult task, even impossible in some cases. One way 

to overcome the problem consists of applying numerical methods, e.g., using Riemann sums to 

approximate the fractional operators. 
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In this work we construct a quadrature formula for approximation of the right Riemann–

Liouville integral (2). We consider a quadrature formula of the following form 
1

0
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C x

x t
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where 
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=  1,t x h t  = + , and function   belongs to the linear space 

( ) ( ) ( )1

2 ,1x L t  , which is defined as (see [1, 2]). 

The following difference is called the error of the quadrature formula (3) 
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The error functional for quadrature formula (3) has the following form 
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Here, are coefficients of quadrature formula (3), 
  ( ),1t

x  is the characteristic function of the interval  

 ,1t , and  ( )x  is Dirac’s delta-function.  

The inner product of two functions ( )x  and ( )x  in the space 
( ) ( )1

2 ,1L t   is defined as 
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And norm of the function in this space is determined as 
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The error of the quadrature formula is a linear functional in 
( ) ( )1

2 ,1L t , where 
( ) ( )1 *

2 ,1L t  is the 

conjugate space to the space 
( ) ( )1

2 ,1L t . 

It is natural to evaluate the quality of the quadrature formula (3) using the maximum error of 

this formula on the unit ball of the Hilbert space 
( ) ( )1

2 ,1L t , that is, using the norm of the functional 
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Obviously, the norm of the error functional depends on C  coefficients and x  nodes. 

If 

( ) ( )1 * 1 *

2 2,

sup
L L

C x 

=  

then the functional ̊ℓ is said to correspond to the optimal quadrature formula in 
( ) ( )1

2 ,1L t . 

Problem above in such a general formulation is quite difficult. Minimizing the norm of the 

error functional with respect to the coefficients C  is a linear problem, and with respect to the nodes 
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x  it is actually non-linear, complicated problem, therefore, for simplicity, we consider this problem 

with fixed nodes x . 

The main problem, in this work, is as follows. 

Problem 1. Find the coefficients C  
that give minimum value to, and calculate 

( ) ( )1 * 1 *

2 2

inf .
L LC

=  

For solving this problem, firstly, we must find the norm of the error functional. For this we 

need an extremal function of the error functional . General form of the extremal function in 
( ) ( )1

2 ,1L t  space was found in works [2, 4, 5] and [10]. In particular, we get the following 
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here   is the extremal function and it is defined as follows 
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Using (5) from relation (4) we get the following 
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It should be noted that since the error functional ( )x  is defined on the space 
( ) ( )1

2 ,1L t , it 

satisfies the following conditions 

( ,1) 0.=                                                         (7) 

The equalities (7) mean that the quadrature formula (3) is exact for any polynomial of degree 

1.m =  

Then, from equality (6), taking into account the expression (7), we have the following 
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From here we get 
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The expression (8) is a multivariate function with respect to coefficients C . Given the 

condition (7), we consider the Lagrange function to find the minimum of the expression 
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here C , and  .  
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In that case, equating to 0 the partial derivatives of the function Ф
 
byC  and  , we get the 

following system of linear equations 
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Thus, we calculate the above integrals and we get the following expressions 
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3 3
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4 1
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3 3
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Likewise, 

0 2 1 .g t= −  

In this way, we have redefined the system of linear equations (11)-(12). 
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