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I. Introduction. Formulation of the problems

The theory of mixed type equations is one of the modern part of the theory of partial
differential equations. Recently a circle of problems for mixed type equations was considerably
extended. Studying boundary-value problems for mixed parabolic-hyperbolic type equations is also
one of the actual directions of the theory of mixed type equations. It can be explained on the one hand
mathematical models of some real-life processes are brought to study problems for such type
equations, on the other hand it is inner neseccity of the theory of the theory of partial differential
equations. For instance, for the first time the necessity of consideration of parabolic-hyperbolic type
equation was specified in 1959 by I. M. Gel’fand [1]. He gave an example, connected to the
movement of gas in a channel, surrounded by a porous environment: inside the channel the movement
of the gas is described by the wave equation, outside by the equation of diffusion. The basic
bibliography about the history of the occurrence and development of this subject can be found in the
book of T. D. Djuraev [2]. At the present time researchers pay attention to study problems with
nonlocal conditions, such as problems with integral conditions, with Bitsadze-Samarskiy conditions
and others. For more information we note works [3],[4] and references therein.

Consider the following parabolic-hyperbolic equation

T T X,y)OW,,
O=L,UGEJ vt ()

1)
Husigny+ uysignx- 1 usign(x+y), (x,y)OW W, UW W,
where I,,I, are given complex numbers, €, :{(X, y):0<x<10< y<1} ,
Q ={(xy)—y<x<l+y,(-1/2) <y <0}, Q, ={(x,y):i-x<y<1+x,(-1/2) < x <0},

and also Q; and Q are domains symmetric domains €, and Q,, with respect to line X+ Yy =0
respectively.

Let 0(0,0), A(LO), B(0,1), A'(0,-1), B'(-1,0), C(1/2,-1/2), D(-1/2,1/2)
A,(L1), a OA(OB"), OB(OA"), OC(OD), AA, is the segment of the lines y=0, x=0,
X+Yy=0, x=1 respectively; Q=0Q, UQ, UQ, UQ, UQ, UOAUOBUOCUOD.

Boundary value problems for equation L,u =0 in the domain Q, U €, U OA investigated
in the works [2,5,6], and in the domain €, U, U, WOAUOB in [7]. And also various type
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of boundary value problems were formulated and investigated in [8,11,12,13] for equation L,u =0
in the domain Q.

In this paper we study the following problem for equation (1) in the Q2.

Problem M. Find a functionu(X, y) satisfying following condition:

1) Itis a regular solution of the equation L,u =0 in the domains Q,, &, Q,, Q;, Q;;
2) u(x,y)eC(Q)nCH{(QuUOA LOB)\(0CLOD));

3) It satisfies conditions

udly)=e(y), 0<y<Ii 2
u,(t,0)=f(t), -1<t<0; ©)

u (0,t)=f,(t), -1<t<O0; (4)
u(t,0)+u(0,-t)=g,(t), 0<t<1; (5)
u(0,t)+u(-t,0)=g,(t), 0<t<il 6)

Here o(y), f;(t), g;(t) (i=12) are given functions, such that o(y) eC'0,1]; gy(t),
9,(t)eC[-1,0]NC?*(-1,0) u 9,(0)=9,(0)=0; f,(t), f,(t)eC'(-10) and may has
singularity less that one when t — 0 and t — (—1).
Letu(X,y) be asolution of the problem M. We introduce notations:
u(x,0)=7,(x), 0<x<1; u(0y)=7,y), 0<y<l;
u,(x,0)=v(x), 0<x<1; u,(0,y)=1,(y), O<y<l.

Then using conditions (3)-(6) and formulas which define solution of the problem Cauchy for
equation L,u=0 in the domains Q;, Q? (J=1,2) [9], and also continuity of the solution

u(X,y) for transition over the line X+ Yy =0, it is easy to see that, the problem M is equivalent to
the following problem in €, : find a regular in the domain €}, solution

u(x,y) e C(Q,) r\Cl(Q0 w OAUOB) of the equation

Uy —U, —AU=0, (XYy)eQy, 7)
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satisfying conditions (2) and

Tl(x):%i[vl(t)+fz(_t)]Jo[ﬂz(x_t)]dt+%gl(x), 0<x<1; (@

rz(x)zgz[vz(tﬁfl(—t)]lo[ﬂz(x—t)}dt+%gz(x), 0<x<1; (9

where J,(2) is first kind zero index Bessel function.

Assuming (8) and (9), as Abels inetgral equation with respect to v;(x)+ f,(—X) and
V,(X) + f,(—X) respectively, as in [10], we obtain

() ==f(-x)+Co?[26,() ~ g, ()], 0<x<1; (10)

v, (X) =—T,(=X) + CO/2[27,(X) — 9,(X)],  O0<x<1, (11)

where C2*[ p(x)] = sign(x — m){% p(x) +%/12T p(t)jl[/l(x—t)]dt} J(2)=(212)3,(2).

(10) and (11) are the main functional relations among 7;(X), 7,(X), v;(X) and v,(X),

obtained from the condition thast the solution of problem M in the area of hyperbolicity of equation
(1) must satisfy conditions (3)-(6).

I1. The uniqueness of the solution.

Theorem. If the inequality |1 | fi (\/5/2) holds, then problem M cannot have more than one
solution.

Proof. Let u(x,y) be solution of the problem M for j (y)e f;(y)e g;(x)e O
(j = 1,2). Then the identity (7) and equalities are valid: t O=t;,)=0, j= 1,2,
()= 2C8[L,001, ny()= 2C87[t,()],  0< x<1. (12)
Multiplying identity (7) by the function u(X, y), rewrite in the form

1

(UUX)X- E(uz)y' (ux)z' Il2 ‘= 0, (X,y)OV%. (13)
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Integrate identity (13) over the rectangle V\g’h, bounded by lines X=¢€, Xx=1- e, y=h
, Y=1, where € and h are small enough positive numbers. Then, applying Green's formula, we
have

1

e - e
rr i 20200y)+ B, 00T Jobdy + 21 U)ok S p U
V\g,h 2 e 2 e

1 1

+ 1 U(e, y)u, (e, y)dy- tul- e y)u,(d- e y)dy=0.
h h

Hence, for h® 0, e ® 0, taking into account u(, y)e 0, we get

i)+ B G T Yoy + S (xox-

1 1 1
- Eth(x)dX+ 1 t,(y)n,(y)dy= 0. (14)
0 0

Using equality (12), it is easy to verify that

2 () 3 (o dx+

; t, ()n, (x)dx + ; t,(x)n, (x)dx =

o r

1 X 1 X
+ 22Tt1(x)dXTt1(t)‘]1}¥2(X' )t + | §Tt2(x)dXTt2(t)J1}¥2(X' )t
0 0 0 0

hence, by virtue of t ;(0)=1;(1)= 0, j= 1,2, we get

100N, (A 1 ,(9n, (k=

1 X _ 1 X _
=1 2t ()dxr t, (I ,(x- O+ 171 t,()dxrt, (@) ,(x- t)ldt. (15)
0 0 0 0
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Further, we integrate identity (13) with respect to the segment {(X,y):y= h,

e< x<1- e} Inthe resulting equality, passing to the limitat h® 0, e ® 0, taking into account
t,(0)=0and t,(1)= 0, we get

1 1 1
00N (dx = - H3)mdx- | 2pt 2(x)dx. (16)
0 0 0

Substituting (16) into equality (15), we have

1

T t,(X)N,(x)dx = EI ZTtl(x)detl(t)Jl[z(x t) ot +

1 X 1
1I22Tt2(x)det2(t)31ﬂ2(x— t) ot + T§§(x)mdx+I2Tt (X)dx. (17)
0 0] 0

+
N |

Using formula

/2" !
JpGw+1/2)

where G(z) is Euler gamma function, it is easy to see that

1- x?)" WD cos(xz)dx, Rew> - 1/2,

Ju(2)=

1 X
Tt;(X)dxpt;(@©)JI, [ ,(x- )t =
0 0

:% (1- x )”za}t (t)cos(l 2xt)dtgJ %Tt A(t)sin(l th)dt]gfdm 0, j=12. (18)

Substituting (17) into (14), and then taking into account the inequalities (18) and the condition
1,5 (\2/2) , we derive that u (x,y)e O, ie. u(x,y)=w(y), (x,y)OW, . Since
uLy)e 0,0J yJ 1, then w(y)e 0, 0J yJ 1.Consequently, u(x,y)e 0, (X,y)OW,.

Since ty(X)e t,(y)e Oforj (y)e f;(x)e g;(x)e 0, j= 1,2, from (12) follows
that N, (X) € n,(y)e 0. Then, solutions of the Cauchy problem for equation (1) with homogeneous
initial data, U(X,y)=0 in W 1W,. Consequently, u(X, y)\ﬁ e 0.
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Considering this and f,(x)e f,(y)e O, then, according to the uniqueness of the solution
of the Goursat problem for equation (1) in the domains W, and W, , we get u(x,y)e O,

(%, y)OW, W, .. Consequently, u(x,y) e 0, (X,y)OW, hence follows that Problem M cannot
have more than one solution. The theorem has been proven.

I11. Existence of the solution. Let u(x, y) be a solution of the problem M. Then equality (7),
(10) and (11) are valid. Passing to the limit at y—+0 , from (7) we obtain equation

7/(X) = A7 (X) =, (%), 0<x <1,

The solution of this equation in the interval 0 < x <1, satisfying the boundary conditions
7,(0)=0,(0), 7,(1) =¢(0), is represented as

£, (X) = F (x )+(})K(xt)vl() 3 19

where F(x) =X (0)+ (1- x)g,(0)+ 1 TG(X Dl 0+ (1- )g,(0) Jt,

K(x.t)= sha, (1-t)shix/(4sh4), 0<x<t,
- shit shi (1-x)/(A4shd),  t<x<L

Substituting (10) into (19), we obtain

1
t,(0)- 1 K xDt,Odt= Fp(x),  0J xJ 1. (20)
0

Here G (x,t) = ZCS"Z[G(X,t)],

1

F,(x)= F(X)- T f,(- t)K(x,t)dt- Tgl(t)CO'Z[K(x,t)}it.

(20) is an integral Fredholm equation of the second kind with respect to t,(X). The unique

and unconditional solvability of Eq. (20), by virtue of equivalence, follows from the uniqueness of
the solution to Problem M.

Next, in the domain W we consider the first boundary value problem for Eq. (7), with

boundary data u(0,y)=17,(y), u(x,0)=7,(x), u(Ly)=e(y).

The solution to this problem is determined by the formula [1]
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y

u(x.y) =z ()e""6, (x,y;0.m)dn -
0
2 1 2
_Igo(n)eﬂi 96, (x,y:L7)dr + grl(g)e-ﬂa G (%, i&,0)dé. 21)

X,V 1 ¥l _(x—§+2n)2 —ex —(X+§+2n)2
where G(X,y;&,17) zmnzw{ '{ 4(y-n) ] p[ 4(y-n) ]

Differentiating (21) with respect to X and setting X =0, after some calculations, we have
v, (y ):_j[rz( )e e (1 y)} N(0,y;0,7)dn+F;(y), O<y<1, (22)
n
y ' 1 )
where Fs(Y)=I[(ﬂ(f7)e”“lz(”‘y)} N(0,y;L77)dn +[z;(&)e ™ N(0,y:£,0)d¢,
0 n 0

N(.y:&m)=Y[(y-n)]" 5 exp-(6-2n) [a(y-n)]
Substituting (9) into (22), we have

1
(V)= [Ky (v)v, () dt+ Fy(y),  0<y<l, (23)
0

where

K, (y, t)— e i IN (0, y;0,t)+ _Tﬁ [l ,(h- et y)gN(O,y;O,h)dh |
19 "
F.()= R 51 he h)e':™ YN(0,y;0,h)dh +
0

y Y o ) Y.
- %T ¢ Odtr B0l ,(h- 0l VR N(, y;0,h)dh-
0 t 1 bh
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- L1 et (0, y:0,h)dh
2’5%2 Eh 1y M .

(23) is a Volterra integral equation of the second kind with a weak singularity with respect to
N, (Y) . It has unique solution.

After the function vz(x) from (23) is found, the functions TZ(X) and vl(x) are uniquely
found by formulas (9) and (10), respectively. After that, the solution of problem M in the domain €2,

is defined by (21), and in the domains Q;, Q’; (j=1,2) fomulas that gives the solution of the
Cauchy problem for the equation L,u =0 [9].

This completes the proof of the existence of a solution to Problem M.
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