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A task. It is required to find a solution to the abstract bicaloric equation 
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where ( )u t  - abstract function with values in Hilbert space H .  

A  - constant, positive-definite, self-adjoint, linear, unbounded with everywhere dense domain 

( ) ( )2D A DCH  operator operating from H  in H , and ( ) ( )1 2,u l u l H .  

The validity of the representation is proved. 

( )1 1 2u u t l u= + − . 

Theorem. If a 
1u  and 

2u  are solutions of the caloric equation, then the function 

( )1 1 2u u t l u= + −  is a solution to equation (1) and vice versa, for each given abstract bicaloric 

function there are such functions 
1u  and 

2u  what 

( )1 1 2u u t l u= + −  
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Proof. 1) If 
1u  and 

2u  solution of the caloric equation, that is, the solution of the bicaloric equation 
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Because  

2
2

du
Au 0,

dt
+ = то  ( ( ) )1 1 2 2K u t 1 u u+ + − =   т-е  

2K u u+ = . 

Applying again the operator K+
, given that 

2K u K K u 0;+ + += =  

2) If u  solution of the bicaloric equation, then there are such caloric functions  
1u  ,   

2u  what 

( )1 1 2u u t l u= + − .  

To prove this assertion, it suffices to establish the possibility of choice  
2u . 

Let's put  

2u K u,+=  

( )1 1 2u u t l u= − − . 

It remains to show that  

( )1 2K u t l u 0+ − − =   . 

Indeed: 
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from here  
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1 2K u 0, K u 0+ += = . 

The theorem is completely proven. 

With the help of a view  

( )1 1 2u u t l u= + −           (3) 

The solution of problem (1) - (2) can be reduced to solving the following problems: 
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a task (4) – (5) 
10 t l   incorrect in the classical sense, 

1a l t T   correctly. Problem (4) - (5) 

will be investigated for conditional correctness according to Tikhonov 

Theorem. For any solution of problem (4) - (5), the inequality is true. 

( ) ( ) ( ) 1

t

1 l
1 1

1

l t
u t u 0 u l

l

−
  . 

Proof. Consider the function  1   

( ) ( ) ( )
2

1 1 2t u t u ,u = = . 

Differentiating it, we get 

( ) ( ) ( )1 1 1 1t 2 u ,u 2 Au ,u = =  

( ) ( ) ( ) ( ) ( )2

1 1 1 1 1 1 1 1t 2 u ,u 2 u ,u 2 Au ,Au 2 u ,A u  = + = + . 
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Since the operator is self-adjoint  ( )т.е.A A ,=  то  ( ) ( )2

1 1 1 1u ,A u Au ,Au=  and that means, 

( ) ( )1 1t 4 Au ,Au = . 

Now consider the function 

( ) ( )t ln t =  

Differentiating it, we have 
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    =  = −    

       (8) 

By virtue of the well-known Bunyakovskii inequality, inequality (8) means that the function ( )t  

turned concave upwards, from which it follows that the function ( )t  on the segment  10, l  does 

not exceed a linear function that takes the same values at the ends of the segment as ( )t .   From 

(8) it follows 
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Potentiating inequality (9), we obtain 

( ) ( ) ( ) 1

t

1 l
1

1

l t
t 0 l ,

l
  

−
         

Where  ( ) ( ) ( )
1
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l t t
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1 1u t u 0 u l
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A task (6) – (7)  
20 t l   incorrectly, 

2a l t T    correct in the classical sense, similarly to 

problem (4) - (5) it can be examined for conditional correctness according to Tikhonov 

Let us prove a theorem characterizing the stability estimate for the solution of the problem  

(1) – (2)  

Theorem. For any solution of problem (1) – (2), the inequality  
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Note that inequality (10) implies the uniqueness of the solution to problem (1)–(2) and the 

conditional well-posedness of this problem in the class  

( )  : 0u u M  

This theorem is proved by the logarithmic convexity method 
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