AN ILL-POSED PROBLEM FOR AN ABSTRACT BICALORIC EQUATION.

O.M. Egamberdiev
Associate Professor Namangan Engineering Construction Institute, Namangan,
Republic of Uzbekistan

Abstract: In article the incorrect task for abstract bicaloric the equation is studied and a stability assessment according to Tikhonov is given.

Keywords: bicaloric, spaces, self-conjugate, linear, unlimited,
dense,operator, theorems.
A task. It is required to find a solution to the abstract bicaloric equation

$$
\begin{equation*}
K_{+}^{2} u(t) \equiv\left(\frac{d}{d t}+A\right)^{2} u(t)=0,0<t<T \tag{1}
\end{equation*}
$$

satisfying the following conditions:

$$
\left.\begin{array}{l}
\left.u\right|_{t=l_{1}}=u\left(l_{1}\right) \tag{2}\\
\left.u\right|_{t=l_{2}}=u\left(l_{2}\right)
\end{array}\right\}
$$

where $u(t)$ - abstract function with values in Hilbert space H.
A - constant, positive-definite, self-adjoint, linear, unbounded with everywhere dense domain $D\left(A^{2}\right)(D C H)$ operator operating from H in H, and $u\left(l_{1}\right), u\left(l_{2}\right) \in H$.

The validity of the representation is proved.

$$
u=u_{1}+\left(t-l_{l}\right) u_{2} .
$$

Theorem. If a u_{1} and u_{2} are solutions of the caloric equation, then the function $u=u_{1}+\left(t-l_{1}\right) u_{2}$ is a solution to equation (1) and vice versa, for each given abstract bicaloric function there are such functions u_{1} and u_{2} what

$$
u=u_{1}+\left(t-l_{1}\right) u_{2}
$$

89	ISSN 2319-2836 (online), Published by ASIA PACIFIC JOURNAL OF MARKETING \& MANAGEMENT REVIEW., under Volume: 11 Issue: 05 in May-2022 https://www.gejournal.net/index.php/APJMMR
	Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

Proof. 1) If u_{1} and u_{2} solution of the caloric equation, that is, the solution of the bicaloric equation

$$
\begin{aligned}
& K_{+} u=K_{+}\left[u_{1}+\left(t-l_{1}\right) u_{2}\right]=K_{+} u_{1}+u_{2}+\left(t-l_{1}\right) \frac{d u_{2}}{d t}+A\left(t-l_{1}\right) u_{2}= \\
& =u_{2}+\left(t-l_{1}\right)\left(\frac{d u_{2}}{d t}+A u_{2}\right)=u_{2}+\left(t-l_{1}\right) \cdot K_{+} u_{2}=u_{2} .
\end{aligned}
$$

Because

$$
\frac{d u_{2}}{d t}+A u_{2}=0, \quad \text { то } \quad K_{+}\left(u_{1}+\left(t-l_{1}\right) u_{2}\right)=u_{2} \quad \text { т-е } K_{+} u=u_{2} .
$$

Applying again the operator K_{+}, given that $K_{+} u_{2}=K_{+} K_{+} u=0$;
2) If u solution of the bicaloric equation, then there are such caloric functions u_{1}, u_{2} what $u=u_{1}+\left(t-l_{1}\right) u_{2}$.

To prove this assertion, it suffices to establish the possibility of choice u_{2}.
Let's put

$$
\begin{gathered}
u_{2}=K_{+} u, \\
u_{1}=u-\left(t-l_{1}\right) u_{2} .
\end{gathered}
$$

It remains to show that

$$
K_{+}\left[u-\left(t-l_{1}\right) u_{2}\right]=0 .
$$

Indeed:

$$
\begin{aligned}
& K_{+} u_{l}=K_{+}\left[u-\left(t-l_{l}\right) u_{2}\right]=K_{+} u-K_{+}\left(t-l_{l}\right) u_{2}= \\
& =K_{+} u-u_{2}-\left(t-l_{l}\right) \cdot \frac{d u_{2}}{d t}-A \cdot\left(t-l_{l}\right) u_{2}= \\
& =K_{+} u-u_{2}-\left(t-l_{l}\right) \cdot\left(\frac{d u_{2}}{d t}-A u_{2}\right)=K_{+} u-u_{2}=0,
\end{aligned}
$$

from here

90	ISSN 2319-2836 (Online), Published by ASIA PACIFIC JOURNAL OF MARETING \& MANAGEMENT REVIEW., under Volume: 11 Issue: 05 in May-2022 https://www.gejournal.net/index.php/APJMMR
	Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY) To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

$$
K_{+} u_{1}=0, \quad K_{+} u_{2}=0 .
$$

The theorem is completely proven.
With the help of a view

$$
\begin{equation*}
u=u_{1}+\left(t-l_{1}\right) u_{2} \tag{3}
\end{equation*}
$$

The solution of problem (1) - (2) can be reduced to solving the following problems:

$$
\left\{\begin{array}{c}
K_{+} u_{1}=0, \tag{4}\\
\left.u_{1}\right|_{t=l_{1}}=u\left(l_{1}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
K_{+} u_{2}=0, \tag{6}\\
\left.u_{2}\right|_{t=l_{2}}=u_{2}\left(l_{2}\right)
\end{array}\right.
$$

$$
\text { where } \quad u_{2}\left(l_{2}\right)=\frac{u\left(l_{1}\right)}{l_{2}-l_{1}}-\frac{u_{1}\left(l_{2}\right)}{l_{2}-l_{1}}, \quad u_{1}\left(l_{2}\right)=\|u(0)\|^{l_{1}-l_{2}}\left\|u\left(l_{1}\right)\right\|^{\frac{l_{2}}{l_{1}}}
$$

a task (4) - (5) $0<t<l_{1}$ incorrect in the classical sense, $a l_{1}<t<T$ correctly. Problem (4) - (5) will be investigated for conditional correctness according to Tikhonov

Theorem. For any solution of problem (4) - (5), the inequality is true.

$$
\left\|u_{1}(t)\right\| \leq\|u(0)\| \frac{l_{1}-t}{l_{1}} \cdot\left\|u\left(l_{1}\right)\right\|^{\frac{t}{l_{1}}} .
$$

Proof. Consider the function [1]

$$
\varphi(t)=\left\|u_{1}(t)\right\|^{2}=\left(u_{1}, u_{2}\right) .
$$

Differentiating it, we get

$$
\begin{gathered}
\varphi^{\prime}(t)=2\left(u_{l}^{\prime}, u_{l}\right)=2\left(A u_{1}, u_{l}\right) \\
\varphi^{\prime \prime}(t)=2\left(u_{l}^{\prime}, u_{l}\right)+2\left(u_{1}, u_{l}^{\prime \prime}\right)=2\left(A u_{l}, A u_{l}\right)+2\left(u_{l}, A^{2} u_{l}\right) .
\end{gathered}
$$

91	ISSN 2319-2836 (online), Published by
	ASIA PACIFIC JOURNAL OF MARKETING \& MANAGEMENT REVIEW.,
	https://www.gejournal.net/index.php/APJMMR

Since the operator is self-adjoint $\left(\right.$ m.e. $\left.A=A^{*}\right)$, то $\left(u_{l}, A^{2} u_{l}\right)=\left(A u_{l}, A u_{l}\right)$ and that means, $\varphi^{\prime \prime}(t)=4\left(A u_{l}, A u_{l}\right)$.

Now consider the function

$$
\psi(t)=\ln \varphi(t)
$$

Differentiating it, we have

$$
\begin{equation*}
\psi^{\prime \prime}(t)=\frac{1}{\varphi^{2}(t)}\left[\varphi^{\prime \prime}(t) \cdot \varphi^{\prime 2}(t)\right]=\frac{4}{\varphi^{2}(t)}\left[\left(A u_{l}, A u_{l}\right)\left(u_{l}, u_{l}\right)-\left(A u_{l}, u_{l}\right)^{2}\right] \geq 0 \tag{8}
\end{equation*}
$$

By virtue of the well-known Bunyakovskii inequality, inequality (8) means that the function $\psi(t)$ turned concave upwards, from which it follows that the function $\psi(t)$ on the segment $\left[0, l_{l}\right]$ does not exceed a linear function that takes the same values at the ends of the segment as $\psi(t)$. From (8) it follows

$$
\begin{equation*}
\psi(t) \leq \frac{l_{1}-t}{l_{1}} \psi(0)+\frac{t}{l_{1}} \psi\left(l_{1}\right) \tag{9}
\end{equation*}
$$

Potentiating inequality (9), we obtain

$$
\varphi(t) \leq[\varphi(0)] \frac{l_{1}-t}{l_{1}} \cdot\left[\varphi\left(l_{l}\right)\right]^{\frac{t}{l_{1}}},
$$

Where $\left\|u_{l}(t)\right\| \leq\|u(0)\|^{\frac{l_{1}-t}{l_{l}}} \cdot\left\|u\left(l_{1}\right)\right\|^{\frac{t}{l_{1}}}$
A task (6) - (7) $0<t<l_{2}$ incorrectly, $a \quad l_{2}<t<T$ correct in the classical sense, similarly to problem (4) - (5) it can be examined for conditional correctness according to Tikhonov

Let us prove a theorem characterizing the stability estimate for the solution of the problem
(1) - (2)

Theorem. For any solution of problem (1) - (2), the inequality

92	ISSN 2319-2836 (online), Published by ASIA PACIFIC JOURNAL OF MARKETING \& MANAGEMENT REVIEW., under Volume: 11 Issue: 05 in May-2022 https://www.gejournal.net/index.php/APJMMR
	Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

$$
\begin{align*}
& \|u(t)\|_{H} \leq\|u(0)\|^{\frac{l_{1}-t}{l_{1}}}\left\|u\left(l_{1}\right)\right\|^{\frac{t}{l_{1}}}+ \\
& +\left(t-l_{1}\right)
\end{aligned} \begin{aligned}
& \frac{1}{l_{2}-l_{1}}\left(\left\|u\left(l_{2}\right)\right\|+\|u(0)\|^{\frac{l_{1}-l_{2}}{l_{1}}}\left\|u\left(l_{1}\right)\right\|^{\frac{l_{2}}{l_{1}}}\right)^{\frac{t}{l_{2}}} \cdot\left\|u\left(l_{1}\right)\right\|^{\frac{t-l_{1}}{l_{1}}}, \quad l_{1}<t<l_{2} \tag{10}\\
& \frac{1}{T-l_{1}}\left(\|u(T)\|+\|u(0)\|^{\frac{l_{1}-T}{l_{1}}}\left\|u\left(l_{1}\right)\right\|^{\frac{T}{l_{1}}}\right)^{\frac{T-t}{T}} \cdot\left\|u\left(l_{2}\right)\right\|^{\frac{t}{l_{2}}}, \quad l_{2} \leq t \leq T
\end{align*}
$$

Note that inequality (10) implies the uniqueness of the solution to problem (1)-(2) and the conditional well-posedness of this problem in the class

$$
\{u:\|u(0)\| \leq M\}
$$

This theorem is proved by the logarithmic convexity method

References:

1. Лаврентьев М.М. Некорректные задачи для дифференииальных уравнений. Новосибирск: Изд-ва НГУ, 1981, 71 с.
2. Кабанихин. С.И. Обратные и некорректные задачи. Новосибирск. 2009 г.
3. Эгамбердиев О.М. Задача Коши для абстрактного поликалорического уравнения. ДАН РУз. № 6. 2011, с. 18-20.
4. Атахаджаев М.А, Эгамбердиев О.М. Задача Коши для абстрактного бикалорического уравнения. Сибирский математический журнал. T.31, № 4, 1990.

93	ISSN 2319-2836 (online), Published by
	ASIA PACIFIC JOURNAL OF MARKETING \& MANAGEMENT REVIEW.,

